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A detailed study is made of the observables ~'(xk)pi + f (x  k) linear in momen- 
tum on a R.iemannian manifold: their quantization and (through quantum 
unitary transformations) physical meaning are discussed using geometrical meth- 
ods. 

1. INTRODUCTION 

E. P. Wigner was known to go around asking the question, "What is 
the observable corresponding to p + x?" (Guenin, 1966). The problem is 
two-fold; the first part being the quantization of p + x and the second the 
physical meaning of the quantized observable Q( p + x)  or in particular how 
one might measure Q(p  + x). This problem may be tackled by considering 
quantum canonical (unitary) transformations, a subject studied extensively 
in recent years by Moshinsky and co-workers (see Garcia-Calderon and 
Moshinsky, 1980, and references therein). 

In this paper we shall study more generally the observable of coordi- 
nate form ~i(xk)p i q - f  defined on a Riemannian configuration manifold, its 
quantization, and, via quantum unitary transformation, its physical mean- 
ing. 
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2. QUANTIZATION 

Let M be a complete Riemannian configuration manifold and T*M its 
cotangent bundle; then an observable P + f linear in momentum is a map 
P + f: T*M ~ R given by the prescription 

VmCT*M, (P+  f ) ( m ) = P ( m ) +  f(~'(m)) (1) 

where P is a C ~ momentum, f a C ~ function on M, and or: T*M --, M the 
projector of the bundle T*M. These observables generalize that considered 
by Wigner since, in every coordinate chart (x i, pi) of T'M, P + f assumes 
the tensor form ~p~ + f.  The procedure of quantization used 1 here consists 
of two simple steps: 

1. Formal Quantization. To each observable P + f we assign a unique 
symmetric operator in the natural Hilbert space L2(M)  by the linear 
prescription 

Qo( P+ f ) - - Q 0 ( P )  +Qo( f )  (2) 

in which Q o ( P ) = -  ih(X+�89 divX) and Q 0 ( f )  = f are defined on the set 
C~(M) of infinitely differentiable functions of compact support, and in 
which X =  ~ 3 / 3 x  ~ denotes the vector field associated with P (Wan and 
McFarlane, 1980). 

Note that Qo(P + f )  cannot, being symmetric but not self-adjoint, be 
identified with the quantum analog of P + f.  Hence the following step. 

2. Exact Quantization. We regard P + f as quantizable if and only if 
Qo(P + f )  is essentially self-adjoint, when the quantized observable Q(P + 
f )  is identified with the unique self-adjoint extension of Qo(P + f) .  Thus 
symbolically Q( P + f )= Qto( P + f ). 

We here present a relationship between the quantizability conditions 
for a momentum P (Mackey, 1963; Wan and Viasminsky, 1977) and those 
of the corresponding observables P + f.  

Theorem 1 (Appendix 1): On the quantization of P + f. P + f is 
quantizable if and only if P is quantizable, i.e. if and only if P is 
complete, 2 when the corresponding quantum observable Q(P  + f )  

IA systematic discussion of quantization using the geometric methods of Kostant and Sourier 
will be given elsewhere. 

2Strictly we require the completeness of almost every integral curve of the associated vector 
field X; we shall, however, continue to term this property "completeness" of the momen- 
tum P. 
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is given explicitly as 

Q~P + / )  = -  ih(Dx + k div X+ ; h - 7 )  

on the domain 

(3) 

DQ( P + f )= {~bE ZZ( M)lq~ AC( X, M), Q( P + f )q,E L2(M) } 

(4) 

and hence satisfies the quantization rule 

Q(P+f)=Q(P)+Q(f) ,  Q(P)=Qto(P), Q( f ) :  Qto( f ) 

(s) 

The symbol AC(X, M) requires explanation: Let B be an open 
subset of M in which X4:0 and let B be sufficiently small that it is 
covered by a chart in which X=O/Ox ~. AC(X, M) is then the set 
of all functions ~/which are absolutely continuous with respect to x ] 
(Fano, 1971; Shilov and Gurevich, 1966; Reed and Simon, 1972) in 
every such open set B. Equivalently in every such open set B, 7/may 
be expressed as the indefinite integral 71 = fX'~dxl for some ~ and 
hence is differentiable with respect to X almost everywhere. This 
notation replaces that of previous papers (Wan and McFarlane, 
1980, 1981) in which the notation C~(X, M) was adopted, which 
might have been construed as requiring differentiability every- 
where. 

3. UNITARY TRANSFORMATIONS AND PHYSICAL 
CONSIDERATIONS 

The quantization scheme for a momentum P as given by Mackey 
(1963) (Wan and Viasminsky, 1977) is based upon a natural association 
between the complete vector field X generated by a momentum P, a 
one-parameter group of transformations of M, and a corresponding one- 
parameter group of unitary transformations of LZ(M). Explicitly let a t, t ~ R, 
be the flow generated by X and let ~bE LZ(M); then the corresponding 
unitary transformations have the form 

u~, ~ = ( ot*g' /~/g' /~ ) '/~o,*~, (6) 
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where g is the determinant of the Riemannian metric gij of M (a scalar 
density), and Or* is a pull-back (Abraham and Marsden, 1978) of o t onto 
densities or functions as appropriate. Q(P) is then defined to be the 
generator of the unitary group, so that Ur(p)= exp[ih-IQ(P)t]. 

Now in the case of a quantizable observable P + f we may construct a 
one-parameter group of unitary transformations of L2(M) by the prescrip- 
tion U~p+i)=exp[ih-lQ(P + f ) t ]  and relate these to the corresponding 
operators U~(e) by means of the following theorems. 

Theorem 2 (Appendix 1): On the unitary operators Udce+i). We 
have 

UQ' - -  : i< . ' (S ,  [ (7) (p+l)--~ ')lhu~2(p ), w ( f , t ) =  'o,*fdt' 
"o 

Theorem 3 (Appendix 2): On the unitary equivalence of Q( P) and 
Q(P + f ) .  Suppose that the observable P + f is quantizable and in 
addition that f admits a global solution to the equation DxF= f; 
then, 

U~p(p+/) : e-iF/tiu~Ap)eiF/h (8) 

Q( P + f ) =  e-'F/hQ( P)e 'F/h (9) 

and finally, denoting the spectral function of Q(P), Q(P + f )  by 
EQ(e)(X), EQ(e+/)(X), respectively, we have 

EQ(e+I)( X ) = e-iF/hEQ(p)( X )e iF/h (10) 

Observe that while the equation DxF= f admits local solutions in 
general, it may not admit any global solutions. For Theorem 3 to be 
applicable the equation must admit as solution a global function on 
M. Note moreover that F may not be a C ~ function on M. An 
example presented at the end of this section serves to illustrate the 
intricacy of the situation. 

We may now return to discuss Wigner's question on the 
physical meaning of p + x. Let M be the Euclidean manifold R 
with a global Cartesian coordinate x conjugate to the momentum p: 
p + x  is clearly quantizable with quantum analog Q(p + x ) =  
- ihd/dx + x on the domain given in equation (4). Since Dd/dxF= 
x admits the global solution F =  �89 2 we have by Theorem 3 that 

Q ( p + x ) = V Q ( P ) V  f, V = e  -ix2/zh (11) 
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or that Q(p + x) is unitarily equivalent to Q(p),  both possessing 
the same spectrum and having spectral functions related by 

F.Q(p+x ( X ) = VEQ p,( X ) V* (12) 

This means that the expectation value of Q( p + x) in any state q, of 
its domain may be obtained from the expectation value of Q(p)  in 
the corresponding state Vt+, so that concretely 

(q~lQ(p + x)l q,) = (v*q~lQ(P)lV%> (13) 

this process not requiring the simultaneous measurement of the 
incompatible observables Q(p) and Q(x). In other words the 
measurement or determination of Q(p + x) amounts to a measure- 
ment of Q(p) together with a calculation by means of equation 
(12). 

We can pursue this matter a little further by considering a 
simultaneous unitary transformation of Q(x) and Q(p) to VQ(x)V t 
and VQ(p)Vt=Q(p+x) .  We then see that Q(p+x)  and Q(x) 
are in fact equally good canonical variables in which Q(p + x )  is 
now the momentum conjugate to Q(x). The nonuniqueness of a 
momentum conjugate to a given coordinate should not be regarded 
as puzzling since a similar ambiguity exists in classical mechanics: 
our theorems here serve to deal more systematically with this 
problem. 

Finally it should be observed that while Theorem 2 applies 
generally Theorem 3 operates under a restriction on F or as is 
equivalent on f ,  and that in general Q(P + f )  and Q(P) are not 
unitarily similar. This may be illustrated by means of the usual 
angular momentum observable L: on R 2: The spectrum of Q(L.)  is 
wholly discrete with eigenfunctions cg,(r, 0 ) =  An(r)exp(inO), and 
eigenvalues nh, n E (0,-+ 1, +-2 . . . .  }. Here (r. 0) denote polar coordi- 
nates in ~2 and An(r ) is such as to normalize %. Now consider the 
observable Q(L z + f) ,  f ~  C~176 which results in the following 
formal eigenfunctions: 

qJ,(r,O)=Au(r)e'~~ - "  - '  fof(r.O')dO'] (14) 

The functions q,,(r, 0) become proper, rather than formal, eigen- 
functions of Q(L z + f )  if the single-valuedness condition q,,(r, 0 )=  
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+~(r, 0 +2qr) is satisfied. This imposes a restriction on f, namely, 
that the 0-mean ( f )0  = (2~r)-'foZ~f(r, 0') dO" must be a numerical 
constant independent of r. This being satisfied we then have 
~t,=n+h-l(f)o,n~{O,+--l,+--2,...}, so that the spectrum of 
Q(L~ + f )  is wholly discrete with eigenvalues h/~,,. Otherwise Q(L= 
+ f )  has no proper eigenvalues and the spectrum is wholly con- 
tinuous showing that Q(L z + f )  is nontrivially distinct from Q(L�88 
We now demonstrate that coincidence of the spectra of Q(L.) and 
Q(L= + f )  is assured by the conditions of Theorem 3, this coinci- 
dence occurring only when ( f )0  = 0. To this end observe that the 
equation DLF= f admits local solutions of the form fo~ O')dO' 
+ const. Such a solution is a global function on M if and only if it 
is single valued, iff f~'f(r,O')dO'=O. In this case Theorem 3 
operates clearly exhibiting why Q(L~) and Q(L.. + f )  have identi- 
cal spectra. 

4. QUANTUM GLOBAL MEASURABILITY 

The concept of the quantum global measurability of a momentum, 
based upon the existence of certain global bounds to the errors of locally 
conducted measurements, and recently introduced by Wan and McFarlane 
(1980, 1981), is readily generalized to the observables P + f  linear in 
momentum (or at least to those satisfying the premises of Theorem 3) for 
the simple reason that unitary transformations preserve the scalar product. 
More explicitly we have that, upon setting g /=  +exp(iF/h), 

AQo(P + f)[+ = II(Qo(P + f ) -  <'I'[ Q0(P + f ) l ' I '> )q '  II = AQ0(P)I+ 

(15) 

Hence, upon noting that q~ and 9 have the same support, we may deduce 
that, for any sequences +n of wave functions in the domain of Qo(P), the 
corresponding sequences of uncertainties AQ0(P + f)[,~, and AQ0(P)[+. 
converge or diverge together. Consequently, P + f is quantum globally 
measurable if and only if so also is P, and therefore the properties 
associated with quantum global measurability (Wan and McFarlane, 1980, 
1981) apply equally to the observables P + f. In particular the quantum 
global measurability of an observable P + f assures its quantizability (in the 
sense of Theorem 1). 
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5. L O C A L  O B S E R V A B L E S  

Recently we have introduced the notion of formal local quantum 
observable 3 QA(p) associated with an open subset A of M and generated by 
a global momentum P, and then discussed the conditions necessary that 
Q~(P) be essentially self-adjoint and therefore correspond to a local quan- 
tum observable QA(p) (McFarlane and Wan, 1981). Explicitly for any open 
subset A of M introduce a projector onto A by 

~r~k(x)=~q'(x), xEA,  V~k@L2(M), (16) 
L O, xf~A 

then the formal local observable generated by the momentum P is defined 
to be Qg(P)=~rQo(P)~r. We may now generalize the concept of local 
observable to objects of the form P + f (or at least those satisfying the 
conditions of Theorem 3) by defining the formal local observables associ- 
ated with P + f as simply 

Q~(P + f ) =  ~rQ~(P + f)~r = Q~(P)+Qg(f)  (17) 

a definition which leads immediately to the following two theorems: 

Theorem 4 (Appendix 3): On the existence of local observables 
QA(p + f). The formal quantum observable QA(p + f )  is essen- 
tially self-adjoint if and only if so also is Q~(P), when the corre- 
sponding self-adjoint extension of Q~(P + f )  assumes the form 

QA(p+f)=QA(p)+Q,4( f ) ,  QA(f)=qrQ(f)~r (18) 

Theorem 5 (Appendix 3): On the reconstruction of Q( P + f ). Let A,, 
be a family of open subsets forming a partition of M except 
possibly for a set of measure zero. Then for a quantizable P + f we 
have 

Q ( P + f ) = ~ Q A . ( P + f ) i f f Q ( P ) = E Q A . ( P  ) (19)  

For the somewhat intricate conditions under which the observables 
QA(p) and the expansion ~,,QA.(p) exist, the reader is referred to 

3By a formal quantum observable is meant a symmetric operator which may or may not be 
essentially self-adjoint. 
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McFarlane and Wan, 1981. We note in conclusion that Theorems 4 
and 5 are valid even when f does not satisfy the premise of Theo- 
rem 3. 
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APPENDIX 1. QUANTIZATION AND UNITARY 
TRANSFORMATIONS 

Lemma AI.I: On the function w(f,t) of Theorem 2. (i) For any fixed 
mE M, w(f, t) is a function of t satisfying Ow(f, t)/at = o*f. (i.i) For any 
fixed t E R ,  w(f, t) is a function on M satisfying 

(a) o * w ( f , t ) : w ( f , t + s ) - w ( f , s )  

(b) w ( f , t ) ~ C ~ ( X , M ) ,  D~w(f , t )=(ot*- l )D'~- l f  

in which C~(X, M) is the set of functions infinitely differentiable with 
respect to X. 

Proof. (i) Trivial. (ii) (a) o,*w(f, t)= o*fd ot*fdt'= f~ o*(ot*f) dr' 
(Greub, et al.4). Hence 

I't �9 t f t  + S �9 t S 
otw( f , t )= JoOj+t,f dt = Jo o,, f dt - fo Ot*f dt'= w( f , t + s)- w( f ,s ) 

(b) Dxw(f,  t ) =  lim [o*w(f, t)-- w(f ,  t)]s- '  
s ~ 0  

= lim [w(f,  t + s ) -  w ( f , s ) -  w( f , t ) ]s  -l 
s ~ O  

= [fo:-1) I f,,)]s-'=Io,*-1): 

Moreover, since D x commutes with Or* (Loomis and Sternberg, 1968), we 
have 

( t i t * - -  1)D~,-'f = D~,-'(o,* - 1 ) f =  D~cw ( f,  t) 

as was required. �9 

4We wish to thank A. Cant for pointing out this reference. 
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Proof of Theorem 2. (i) U~(p+f)=exp[ioa(f, t)/h]U~(e) is 
unitary. 

(ii) U~(e+/)oU~(p+f)= (ot*gl/2/gl/2)W2exp[ioa(f, t)/h] 

X ot*{(o*g'/2/g'/Z)'/2exp[ioa(f,s)/h]o*) 

= (o*g'/2/g'/Z)V2exp[ico(f, t)/h] 

X (o*+sgt/Z/ot*g'/2)l/2exp[iot*oa(f, s)/h] o*+t 

= (ot*+sgl/Z/g '/2)~/2exp[ioa(f, t)/h] 

X expfi[ lo(f ,  t + s ) -  to(f, t)]/h}o*+t 

[[t+s 
"JQ(P+f) 
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obviously 

Hence U~(p+l) forms a one-parameter group of unitary operators in L2(M) 
which is readily seen to be weakly continuous. The existence of the 
self-adjoint generator Q(P + f )  satisfying U~(e+/) = exp[ih-iQ(p + f)t] is 
now assured by Stone's theorem (Prugovecki, 1971). (iii) It remains only to 
exhibit the form of the generator Q(P + f), which we accomplish by a 
series of lemmas: 

Lemma A1.2: On a symmetric restriction of Q(P + f). The operator 
Q(P + f )  when restricted to C~~ has the form 

Qo(P+ f ) = - i h ( X + � 8 9  

Proof By direct calculation: 

VqJeC~(M), Q~ f)q;=-ihdUo(P+/)q' �9 

Lemma A1.3: On the essential self-adjointness of Qo(P + f). The 
operator Qo(P + f )  of Theorem 1 is essentially self-adjoint if P is 
complete almost everywhere. 

Proof If P is complete almost everywhere, then U~(p+/) forms a group 
generating a self-adjoint operator Q(P + f). Now Qo(P + f )  is a symmetric 
restriction of Q(P + f )  by Lemma A1.2. Moreover it is clear that the 
domain of Qo(P +f)  that is C~(M)is invariant under the action of U~(p+[) 
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so that by Nelson's lemma (Abraham and Marsden, 1978) Qo(P + f )  is 
essentially self-adjoint. �9 

Lemma A1.4: On the adjoint of Qo(P + f). As described explicitly in 
(3), (4), and (5), 

Qto(P + f ) =  Q(P)+ Q( f )  

Proof. The expression for Q(P) and its proof are obtained by Wan and 
McFarlane (1980). A slight modification of this proof to take account of f 
yields the result. Note that this lemma holds whether P is complete or not. 

Lemma A1.5: On the completeness of P. If the operator Qo(P + f )  
of Theorem 1 with a bounded function f is essentially self-adjoint, 
then P is complete almost everywhere. 

Proof. I f f  is bounded, then Qtot( P + f )  = Q~( P + f )  implies Q t ( p ) +  
Q ( f ) = Q ( P ) + Q ( f )  (Riesz and Sz.-Nagy, 1955). This means Q t ( P ) =  
Q(P), i.e., Qo(P) is essentially self-adjoint, hence the completeness of P. 
This proof fails when f is an unbounded function. �9 

Lemma A1.6: On the completeness of P. 5 If the operator Qo( P + f )  
of Theorem 1 is essentially self-adjoint, then P is complete almost 
everywhere. 

Proof. Let A be a simply connected open subset with a compact closure 
in M such that on every point of A the vector field X has an incomplete 
maximal integral curve, i.e., the local flow o t on A fails to be defined for, 
say, t I> F > 0. Generalizing the method of Nelson (Abraham and Marsden, 
1978) we introduce the function 

: +~dte-tei~o(f.t)/h(ot*gl/2//gl/2~1/2 * ~I(P,f) f_~  ) ~ 

where o* acting on a function or a density is taken to be zero whenever it is 
undefined, and XA is the characteristic function of A. Observe that Or*X,4, 
hence the above integrand and 71, is zero at m E  M if o,(m) is not in A. It 
can be readily verified that 7/(P, f )  is an element of L2(M)  and that for any 
epGC~(M), we have (~(P,f)l(Qto(P+f)-ih)cp)=O. If Ilr/(P,f)[[ v~0 
then Qo(P + f )  is not essentially self-adjoint (Hellwig, 1964). Now let us 

SWe wish to thank B. Angermann for pointing out some errors in a previous version of the 
proof. 



Quantization and Meaning of Observables Linear in Momentum 65 

confine our attention in what follows to points m ~ M such that Ore(t) E A 
for some t. For any such point m let AT., =(Tl(m),  T2(m))= {t: or(m)E A}, 
then ~(P, f )  at m is obtained by integrating over AT,, only. Now for tE  AT., 
we have 0)(L t ) =  0)1(f )+ 0)2(f, t), where 

0),( f ) :  foT'(m)o* f(  m ) ds, 0)2( f ,  t)  : f:,(m)O*f(m) ds 

and 

71(P, f)-- ei"'(/)/hl:;( P, f) 

where 

~( P' f )  : fAT" dt e--'ei'~:~f ")/h( ot*gl /2/g' /2 ) l /2Ot*XA 

Observe that 0)2(f, t) is determined entirely by the values of f i n  A. LetfA be 
a bounded C ~ function which coincides with f in A. Let fo = f -  fA; then 
0)2(fo, t ) = 0  for tEAT,, and [lTl(P, fo)ll=ll~(P, fo)llv~0 since the integral 
for ~(P, f0) has a real and positive integrand. This means that Qo( P + fo) is 
not essentially self-adjoint, a result which, bearing in mind the boundedness 
of fA, implies that Qo(P + f ) =  Qo(P + fo)+ Qo(fA) is not essentially self- 
adjoint. �9 

A P P E N D I X  2: ON THE UNITARY EQUIVALENCE OF 
Q( P + f )  A N D  Q( P ) 

Proof of Theorem 3. Let F be a function on M satisfying the equation 
DxF = f everywhere; then 

0)( :,t)= fo'O,w.: (o:F)d,' 

= Dxfoto,*Fdt'= Df0)(F, t)  = (o,* - 1)F 

Hence by direct calculation 

V6 t ?+f) : e,~O 7- ,)r/h V6 re) : e - iF /hVQ(e)  e'F/n 

from which the remaining results of the theorem can readily be established. 
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APPENDIX 3: O N  LOCAL OBSERVABLES 

Proof of Theorem 4. Q~( P + f ) = Q~( P ) + ~rQo( f )~r impl ies  that  

( Q g ( p  + f ) ) t : ( Q g ( p ) ) t  +~rQto(f)~r, 

( Q g ( e  + f ) ) t t  = ( Q g ( e ) ) t t  + ~rQtot ( f ) v r  

s ince ~r and  ~rQo(f)~r are b o u n d e d  opera to r s  (Riesz and  Sz.-Nagy,  1955). 
Moreover ,  Qto(f) = Qt0t(f  ) = Q ( f ) ,  so that  (O~(P + f ) ) t  = (Qg(p  + f ) ) t t  
if and  only if (Q~(p)) t (Q~(p)) t t  as required.  �9 

Proof of Theorem 5. Q A , ( p + f ) = Q A , ( p ) + Q A , ( f )  impl ies  that  
E~QA,(p + f )  = y. QAo(p)+ y. QA, ( f ) .  It  then fol lows f rom Q(P + f )  = 
Q ( P ) + O ( f )  that  o ( e + f ) = y .  Q A , ( p + f )  if and  only  if Q ( P ) =  
y~ QAo(p). �9 
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